Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.343
Filtrar
1.
Sci Rep ; 14(1): 6488, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499636

RESUMO

Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive tract and a leading cause of cancer-related death worldwide. Since many CRC patients are diagnosed already in the advanced stage, and traditional chemoradiotherapy is prone to drug resistance, it is important to find new therapeutic targets. In this study, the expression levels of ALDOA and p-AKT were detected in cancer tissues and paired normal tissues, and it was found that they were significantly increased in CRC tissues, and their high expression indicated poor prognosis. Moreover, a positive correlation between the expression of ALDOA and p-AKT was found in CRC tissues and paired normal tissues. In addition, the Kaplan-Meier analysis revealed that the group with both negative of ALDOA/p-AKT expression had longer five-year survival rates compared with the other group. Besides, the group with both high expression of ALDOA/p-AKT had a worse prognosis compared with the other group. Based on the expression of ALDOA and p-AKT in tumor tissues, we can effectively distinguish tumor tissues from normal tissues through cluster analysis. Furthermore, we constructed nomograms to predict 3-year and 5-year overall survival, showing that the expression of ALDOA/p-AKT plays a crucial role in predicting the prognosis of CRC patients. Therefore, ALDOA/p-AKT may act as a crucial role in CRC, which may provide new horizons for targeted therapies for CRC.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas c-akt , Humanos , Prognóstico , Estimativa de Kaplan-Meier , Neoplasias Colorretais/metabolismo , Frutose-Bifosfato Aldolase/metabolismo
2.
Funct Integr Genomics ; 24(2): 53, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38453820

RESUMO

Hepatocellular carcinoma (HCC) is one of the malignancies with the worst prognosis worldwide, in the occurrence and development of which glycolysis plays a central role. This study uncovered a mechanism by which ZNF692 regulates ALDOA-dependent glycolysis in HCC cells. RT-qPCR and western blotting were used to detect the expression of ZNF692, KAT5, and ALDOA in HCC cell lines and a normal liver cell line. The influences of transfection-induced alterations in the expression of ZNF692, KAT5, and ALDOA on the functions of HepG2 cells were detected by performing MTT, flow cytometry, Transwell, cell scratch, and colony formation assays, and the levels of glucose and lactate were determined using assay kits. ChIP and luciferase reporter assays were conducted to validate the binding of ZNF692 to the KAT5 promoter, and co-IP assays to detect the interaction between KAT5 and ALDOA and the acetylation of ALDOA. ZNF692, KAT5, and ALDOA were highly expressed in human HCC samples and cell lines, and their expression levels were positively correlated in HCC. ZNF692, ALDOA, or KAT5 knockdown inhibited glycolysis, proliferation, invasion, and migration and promoted apoptosis in HepG2 cells. ZNF692 bound to the KAT5 promoter and promoted its activity. ALDOA acetylation levels were elevated in HCC cell lines. KAT5 bound to ALDOA and catalyzed ALDOA acetylation. ALDOA or KAT5 overexpression in the same time of ZNF692 knockdown, compared to ZNF692 knockdown only, stimulated glycolysis, proliferation, invasion, and migration and reduced apoptosis in HepG2 cells. ZNF692 promotes the acetylation modification and protein expression of ALDOA by catalyzing KAT5 transcription, thereby accelerating glycolysis to drive HCC cell development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Células Hep G2 , Glicólise , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo
3.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396648

RESUMO

The employment of 2-deoxyribose-5-phosphate aldolase (DERA) stands as a prevalent biocatalytic route for synthesizing statin side chains. The main problem with this pathway is the low stability of the enzyme. In this study, mesocellular silica foam (MCF) with different pore sizes was used as a carrier for the covalent immobilization of DERA. Different functionalizing and activating agents were tested and kinetic modeling was subsequently performed. The use of succinic anhydride as an activating agent resulted in an enzyme hyperactivation of approx. 140%, and the stability almost doubled compared to that of the free enzyme. It was also shown that the pore size of MCF has a decisive influence on the stability of the DERA enzyme.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Dióxido de Silício/química , Aldeído Liases/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Biocatálise
4.
J Lipid Res ; 65(3): 100525, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38417553

RESUMO

The availability of genome-wide transcriptomic and proteomic datasets is ever-increasing and often not used beyond initial publication. Here, we applied module-based coexpression network analysis to a comprehensive catalog of 35 mouse genome-wide liver expression datasets (encompassing more than 3800 mice) with the goal of identifying and validating unknown genes involved in cholesterol metabolism. From these 35 datasets, we identified a conserved module of genes enriched with cholesterol biosynthetic genes. Using a systematic approach across the 35 datasets, we identified three genes (Rdh11, Echdc1, and Aldoc) with no known role in cholesterol metabolism. We then performed functional validation studies and show that each gene is capable of regulating cholesterol metabolism. For the glycolytic gene, Aldoc, we demonstrate that it contributes to de novo cholesterol biosynthesis and regulates cholesterol and triglyceride levels in mice. As Aldoc is located within a genome-wide significant genome-wide association studies locus for human plasma cholesterol levels, our studies establish Aldoc as a causal gene within this locus. Through our work, we develop a framework for leveraging mouse genome-wide liver datasets for identifying and validating genes involved in cholesterol metabolism.


Assuntos
Frutose-Bifosfato Aldolase , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Animais , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Proteômica , Colesterol/metabolismo , Fígado/metabolismo
5.
Reprod Biol ; 24(1): 100845, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38159424

RESUMO

Hepatitis B virus (HBV) infection is associated with male infertility. The mechanism includes an increase in chromosomal instability in sperm, which has an adverse effect on sperm viability and function. Sertoli cells (SCs) are vital in spermatogenesis because they use glycolysis to provide energy to germ cells and themselves. HBV infection impairs sperm function. However, whether HBV infection disrupts energy metabolism in SCs remains unclear. This study aimed to determine the role of serum exosomes of HBV-infected patients in SC viability and glycolysis. Serum exosomes were obtained from 30 patients with (HBV+_exo) or without (HBV-_exo) HBV infection using high-speed centrifugation and identified by transmission electron microscopy and western blot analysis. Cell viability is determined by CCK-8 assay. Glycolysis is determined by detecting extracellular acidification rate and ATP levels. miR-122-5p expression levels are detected by quantitative RT-PCR, and a dual-luciferase gene reporter assay confirms the downstream target gene of miR-122-5p. Protein expression is determined by western blot analysis. The results show that HBV+ _exo inhibited cell viability, extracellular acidification rate, and ATP production of SCs. miR-122-5p is highly expressed in HBV+ _exo compared with that in HBV-_exo. Furthermore, HBV+ _exo is efficiently taken up by SCs, whereas miR-122-5p is efficiently transported to SCs. miR-122-5p overexpression downregulates ALDOA expression and inhibits SC viability and glycolysis. However, ALDOA overexpression reverses the effects of miR-122-5p and HBV+ _exo on SC viability and glycolysis. HBV+ _exo may deliver miR-122-5p to target ALDOA and inhibit SC viability and glycolysis, thus providing new therapeutic ideas for treating HBV-associated male infertility.


Assuntos
Exossomos , Infertilidade Masculina , MicroRNAs , Humanos , Masculino , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Exossomos/metabolismo , Células de Sertoli/metabolismo , Sêmen/metabolismo , Glicólise , Infertilidade Masculina/metabolismo , Trifosfato de Adenosina/metabolismo , Frutose-Bifosfato Aldolase/metabolismo
6.
Nat Commun ; 14(1): 8490, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123535

RESUMO

One-carbon (C1) substrates, such as methanol or formate, are attractive feedstocks for circular bioeconomy. These substrates are typically converted into formaldehyde, serving as the entry point into metabolism. Here, we design an erythrulose monophosphate (EuMP) cycle for formaldehyde assimilation, leveraging a promiscuous dihydroxyacetone phosphate dependent aldolase as key enzyme. In silico modeling reveals that the cycle is highly energy-efficient, holding the potential for high bioproduct yields. Dissecting the EuMP into four modules, we use a stepwise strategy to demonstrate in vivo feasibility of the modules in E. coli sensor strains with sarcosine as formaldehyde source. From adaptive laboratory evolution for module integration, we identify key mutations enabling the accommodation of the EuMP reactions with endogenous metabolism. Overall, our study demonstrates the proof-of-concept for a highly efficient, new-to-nature formaldehyde assimilation pathway, opening a way for the development of a methylotrophic platform for a C1-fueled bioeconomy in the future.


Assuntos
Escherichia coli , Metanol , Escherichia coli/genética , Escherichia coli/metabolismo , Metanol/metabolismo , Formaldeído/metabolismo , Sarcosina , Frutose-Bifosfato Aldolase/metabolismo , Engenharia Metabólica
7.
J Transl Med ; 21(1): 838, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990271

RESUMO

BACKGROUND: LIPH, a membrane-associated phosphatidic acid-selective phospholipase A1a, can produce LPA (Lysophosphatidic acid) from PA (Phosphatidic acid) on the outer leaflet of the plasma membrane. It is well known that LIPH dysfunction contributes to lipid metabolism disorder. Previous study shows that LIPH was found to be a potential gene related to poor prognosis with pancreatic ductal adenocarcinoma (PDAC). However, the biological functions of LIPH in PDAC remain unclear. METHODS: Cell viability assays were used to evaluate whether LIPH affected cell proliferation. RNA sequencing and immunoprecipitation showed that LIPH participates in tumor glycolysis by stimulating LPA/LPAR axis and maintaining aldolase A (ALDOA) stability in the cytosol. Subcutaneous, orthotopic xenograft models and patient-derived xenograft PDAC model were used to evaluate a newly developed Gemcitabine-based therapy. RESULTS: LIPH was significantly upregulated in PDAC and was related to later pathological stage and poor prognosis. LIPH downregulation in PDAC cells inhibited colony formation and proliferation. Mechanistically, LIPH triggered PI3K/AKT/HIF1A signaling via LPA/LPAR axis. LIPH also promoted glycolysis and de novo synthesis of glycerolipids by maintaining ALDOA stability in the cytosol. Xenograft models show that PDAC with high LIPH expression levels was sensitive to gemcitabine/ki16425/aldometanib therapy without causing discernible side effects. CONCLUSION: LIPH directly bridges PDAC cells and tumor microenvironment to facilitate aberrant aerobic glycolysis via activating LPA/LPAR axis and maintaining ALDOA stability, which provides an actionable gemcitabine-based combination therapy with limited side effects.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Frutose-Bifosfato Aldolase/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Gencitabina , Proliferação de Células , Glicólise , Fenótipo , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Neoplasias Pancreáticas
8.
Cancer Biol Ther ; 24(1): 2287128, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38010897

RESUMO

Radioresistance is the major obstacle that affects the efficacy of radiotherapy which is an important treatment for cervical cancer. By analyzing the databases, we found that aldolase A (ALDOA), which is a key enzyme in metabolic reprogramming, has a higher expression in cervical cancer patients and is associated with poor prognosis. We detected the expression of ALDOA in the constructed cervical cancer radioresistance (RR) cells by repetitive irradiation and found that it was upregulated compared to the control cells. Functional assays were conducted and the results showed that the knockdown of ALDOA in cervical cancer RR cells inhibited the proliferation, migration, and clonogenic abilities by regulating the cell glycolysis. In addition, downregulation of ALDOA enhanced radiation-induced apoptosis and DNA damage by causing G2/M phase arrest and further promoted radiosensitivity of cervical cancer cells. The functions of ALDOA in regulating tumor radiosensitivity were also verified by the mouse tumor transplantation model in vivo. Therefore, our study provides new insights into the functions of ALDOA in regulating the efficacy of radiotherapy and indicates that ALDOA might be a promising target for enhancing radiosensitivity in treating cervical cancer patients.


Assuntos
Frutose-Bifosfato Aldolase , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/genética , Dano ao DNA , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Regulação Neoplásica da Expressão Gênica , Glicólise , Tolerância a Radiação/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/patologia
9.
Cell Death Dis ; 14(10): 660, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816733

RESUMO

Colorectal cancer (CRC) is a prevalent malignancy worldwide and is associated with a high mortality rate. Changes in bioenergy metabolism, such as the Warburg effect, are often observed in CRC. Aldolase B (ALDOB) has been identified as a potential regulator of these changes, but its exact role in CRC cell behavior and bioenergetic homeostasis is not fully understood. To investigate this, two cohorts of CRC patients were analyzed independently. The results showed that higher ALDOB expression was linked to unfavorable prognosis, increased circulating carcinoembryonic antigen (CEA) levels, and altered bioenergetics in CRC. Further analysis using cell-based assays demonstrated that ALDOB promoted cell proliferation, chemoresistance, and increased expression of CEA in CRC cells. The activation of pyruvate dehydrogenase kinase-1 (PDK1) by ALDOB-induced lactagenesis and secretion, which in turn mediated the effects on CEA expression. Secreted lactate was found to enhance lactate dehydrogenase B (LDHB) expression in adjacent cells and to be a crucial modulator of ALDOB-mediated phenotypes. Additionally, the effect of ALDOB on CEA expression was downstream of the bioenergetic changes mediated by secreted lactate. The study also identified CEA cell adhesion molecule-6 (CEACAM6) as a downstream effector of ALDOB that controlled CRC cell proliferation and chemoresistance. Notably, CEACAM6 activation was shown to enhance protein stability through lysine lactylation, downstream of ALDOB-mediated lactagenesis. The ALDOB/PDK1/lactate/CEACAM6 axis plays an essential role in CRC cell behavior and bioenergetic homeostasis, providing new insights into the involvement of CEACAM6 in CRC and the Warburg effect. These findings may lead to the development of new treatment strategies for CRC patients.


Assuntos
Neoplasias Colorretais , Frutose-Bifosfato Aldolase , Humanos , Frutose-Bifosfato Aldolase/metabolismo , Antígeno Carcinoembrionário , Resistencia a Medicamentos Antineoplásicos , Moléculas de Adesão Celular , Neoplasias Colorretais/patologia , Lactatos , Linhagem Celular Tumoral , Antígenos CD/genética , Proteínas Ligadas por GPI
10.
Biotechnol Lett ; 45(11-12): 1521-1528, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688676

RESUMO

N­Acetyl­D­neuraminic acid (Neu5Ac) is the crucial compound for the chemical synthesis of antiflu medicine Zanamivir. Chemoenzymatic synthesis of Neu5Ac involves N-acetyl-D-glucosamine 2-epimerase (AGE)-catalyzed epimerization of N-acetyl-D-glucosamine (GlcNAc) to N-acetyl-D-mannosamine (ManNAc), and aldolase-catalyzed condensation between ManNAc and pyruvate. Host optimization plays an important role in the whole-cell biotransformation of value-added compounds. In this study, via single-plasmid biotransformation system, we showed that the AGE gene BT0453, cloned from human gut microorganism Bacteroides thetaiotaomicron VPI-5482, showed the highest biotransformation yield among the AGE genes tested; and there is no clear Neu5Ac yield difference between the BT0453 coupled with one aldolase coding nanA gene and two nanA genes. Next, Escherichia coli chromosomal genes involved in substrate degradation, product exportation and pH change were deleted via recombineering and CRISPR/Cas9. With the final E. coli BL21(DE3) ΔnanA Δnag ΔpoxB as host, a significant 16.5% yield improvement was obtained. Furthermore, precursor (pyruvate) feeding resulted in 3.2% yield improvement, reaching 66.8% molar biotransformation. The result highlights the importance of host optimization, and set the stage for further metabolic engineering of whole-cell biotransformation of Neu5Ac.


Assuntos
Aldeído Liases , Escherichia coli , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Aldeído Liases/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Ácido Pirúvico/metabolismo , Biotransformação , Ácido N-Acetilneuramínico/metabolismo
11.
Dis Markers ; 2023: 1702125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457886

RESUMO

Colorectal cancer (CRC) is a serious threat to human health, and its underlying mechanisms remain to be further explored. Aldolase A (ALDOA) has received increasing attention for its reported association with multiple cancers, but the role and mechanisms of ALDOA in CRC are still unclear. In the current study, high expression levels and enzymatic activity of ALDOA were detected in CRC tissues and cell lines, indicating the clinical significance of ALDOA in human CRC. In addition, silencing ALDOA significantly impaired the proliferation and metastasis of CRC cells in vitro and in vivo. Mechanistically, immunoprecipitation assays and mass spectrometry analysis identified the binding protein COPS6 of ALDOA. Furthermore, the promoting effects of upregulated ALDOA on CRC cell proliferation and metastasis were inhibited by COPS6 depletion, demonstrating COPS6 was required for ALDOA in mediating CRC progress. Moreover, the epithelial-mesenchymal transition (EMT) program and MAPK signaling pathway were found to be activated by ALDOA overexpression as well. In summary, our findings suggested that ALDOA facilitated the proliferation and metastasis of CRC by binding and regulating COPS6, inducing EMT, and activating the mitogen-activated protein kinase (MAPK) signaling pathway. The present study provided evidence for ALDOA as a promising potential biomarker for CRC.


Assuntos
Neoplasias Colorretais , Proteínas Quinases Ativadas por Mitógeno , Humanos , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Transdução de Sinais , Proliferação de Células , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Complexo do Signalossomo COP9/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
12.
Biol Direct ; 18(1): 36, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403106

RESUMO

LncRNA PSMA3-AS1 functions as an oncogene in several cancers, including ovarian cancer, lung cancer, and colorectal cancer. However, its role in gastric cancer (GC) progression remains unclear. In this study, the levels of PSMA3-AS1, miR-329-3p, and aldolase A (ALDOA) in 20 paired human GC tissues and adjacent nontumorous tissues were measured by real-time PCR. GC cells were transfected with recombinant plasmid carrying full-length PSMA3-AS1 or shRNA targeting PSMA3-AS1. The stable transfectants were selected by G418. Then, the effects of PSMA3-AS1 knockdown or overexpression on GC progression in vitro and in vivo were evaluated. The results showed that PSMA3-AS1 was highly expressed in human GC tissues. Stable knockdown of PSMA3-AS1 significantly restrained proliferation/migration/invasion, enhanced cell apoptosis, and induced oxidative stress in vitro. Tumor growth and matrix metalloproteinase expression in tumor tissues were markedly inhibited, while oxidative stress was enhanced in nude mice after stable PSMA3-AS1 knockdown. Additionally, PSMA3-AS1 negatively regulated miR-329-3p while positively regulated ALDOA expression. MiR-329-3p directly targeted ALDOA-3'UTR. Interestingly, miR-329-3p knockdown or ALDOA overexpression partially attenuated the tumor-suppressive effects of PSMA3-AS1 knockdown. Conversely, PSMA3-AS1 overexpression exhibited the opposite effects. PSMA3-AS1 promoted GC progression by regulating the miR-329-3p/ALDOA axis. PSMA3-AS1 might serve as a promising and effective target for GC treatment.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Animais , Camundongos , Humanos , Neoplasias Gástricas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Camundongos Nus , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo
13.
J Agric Food Chem ; 71(10): 4328-4336, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36856566

RESUMO

One-carbon chemicals (C 1s) are potential building blocks as they are cheap, sustainable, and abiotic components. Methanol-derived formaldehyde can be another versatile building block for the production of 2-keto-4-hydroxyacid derivatives that can be used for amino acids, hydroxy carboxylic acids, and chiral aldehydes. To produce 2-keto-4-hydroxybutyrate from C 1s in an environment-friendly way, we characterized an aldolase from Pseudomonas aeruginosa PAO1 (PaADL), which showed much higher catalytic activity in condensing formaldehyde and pyruvate than the reported aldolases. By applying a structure-based rational approach, we found a variant (PaADLV121A/L241A) that exhibited better catalytic activities than the wild-type enzyme. Next, we constructed a one-pot cascade biocatalyst system by combining PaADL and a methanol dehydrogenase (MDH) and, for the first time, effectively produced 2-keto-4-hydroxybutyrate as the main product from pyruvate and methanol via an enzymatic reaction. This simple process applied here will help design a green process for the production of 2-keto-4-hydroxyacid derivatives.


Assuntos
Frutose-Bifosfato Aldolase , Ácido Pirúvico , Frutose-Bifosfato Aldolase/metabolismo , Ácido Pirúvico/metabolismo , Metanol/metabolismo , Aldeído Liases/química , Formaldeído
14.
Molecules ; 28(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36838836

RESUMO

Thermostability is important for the thermoactivity of proteins including enzymes. However, it is still challenging to pinpoint the specific structural factors for different temperature thresholds to initiate their specific structural and functional perturbations. Here, graph theory was used to investigate how the temperature-dependent noncovalent interactions as identified in the structures of aldolase B and its prevalent A149P mutant could form a systematic fluidic grid-like mesh network with topological grids to regulate the structural thermostability and the functional thermoactivity upon cyclization against decyclization in an extended range of a subunit. The results showed that the biggest grid may determine the melting temperature thresholds for the changes in their secondary and tertiary structures and specific catalytic activities. Further, a highly conserved thermostable grid may serve as an anchor to secure the flexible active site to achieve the specific thermoactivity. Finally, higher grid-based systematic thermal instability may disfavor the thermoactivity. Thus, this computational study may provide critical clues for the structural thermostability and the functional thermoactivity of proteins including enzymes.


Assuntos
Frutose-Bifosfato Aldolase , Frutose-Bifosfato Aldolase/química , Frutose-Bifosfato Aldolase/metabolismo , Temperatura , Estabilidade Enzimática
15.
Front Med ; 17(3): 503-517, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36790589

RESUMO

Aldolase B (ALDOB), a glycolytic enzyme, is uniformly depleted in clear cell renal cell carcinoma (ccRCC) tissues. We previously showed that ALDOB inhibited proliferation through a mechanism independent of its enzymatic activity in ccRCC, but the mechanism was not unequivocally identified. We showed that the corepressor C-terminal-binding protein 2 (CtBP2) is a novel ALDOB-interacting protein in ccRCC. The CtBP2-to-ALDOB expression ratio in clinical samples was correlated with the expression of CtBP2 target genes and was associated with shorter survival. ALDOB inhibited CtBP2-mediated repression of multiple cell cycle inhibitor, proapoptotic, and epithelial marker genes. Furthermore, ALDOB overexpression decreased the proliferation and migration of ccRCC cells in an ALDOB-CtBP2 interaction-dependent manner. Mechanistically, our findings showed that ALDOB recruited acireductone dioxygenase 1, which catalyzes the synthesis of an endogenous inhibitor of CtBP2, 4-methylthio 2-oxobutyric acid. ALDOB functions as a scaffold to bring acireductone dioxygenase and CtBP2 in close proximity to potentiate acireductone dioxygenase-mediated inhibition of CtBP2, and this scaffolding effect was independent of ALDOB enzymatic activity. Moreover, increased ALDOB expression inhibited tumor growth in a xenograft model and decreased lung metastasis in vivo. Our findings reveal that ALDOB is a negative regulator of CtBP2 and inhibits tumor growth and metastasis in ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Fatores de Transcrição/genética , Neoplasias Renais/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
16.
mBio ; 14(1): e0322322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36598285

RESUMO

The preferred carbon source of Staphylococcus aureus and many other pathogens is glucose, and its consumption is critical during infection. However, glucose utilization increases the cellular demand for manganese, a nutrient sequestered by the host as a defense against invading pathogens. Therefore, bacteria must balance glucose metabolism with the increasing demand that metal-dependent processes, such as glycolysis, impose upon the cell. A critical regulator that enables S. aureus to resist nutritional immunity is the ArlRS two-component system. This work revealed that ArlRS regulates the expression of FdaB, a metal-independent fructose 1,6-bisphosphate aldolase. Further investigation revealed that when S. aureus is metal-starved by the host, FdaB functionally replaces the metal-dependent isozyme FbaA, thereby allowing S. aureus to resist host-imposed metal starvation in culture. Although metal-dependent aldolases are canonically zinc-dependent, this work uncovered that FbaA requires manganese for activity and that FdaB protects S. aureus from manganese starvation. Both FbaA and FdaB contribute to the ability of S. aureus to cause invasive disease in wild-type mice. However, the virulence defect of a strain lacking FdaB was reversed in calprotectin-deficient mice, which have defects in manganese sequestration, indicating that this isozyme contributes to the ability of this pathogen to overcome manganese limitation during infection. Cumulatively, these observations suggest that the expression of the metal-independent aldolase FdaB allows S. aureus to alleviate the increased demand for manganese that glucose consumption imposes, and highlights the cofactor flexibility of even established metalloenzyme families. IMPORTANCE Staphylococcus aureus and other pathogens consume glucose during infection. Glucose utilization increases the demand for transition metals, such as manganese, a nutrient that the host limits as a defense mechanism against invading pathogens. Therefore, pathogenic bacteria must balance glucose and manganese requirements during infection. The two-component system ArlRS is an important regulator that allows S. aureus to adapt to both glucose and manganese starvation. Among the genes regulated by ArlRS is the metal-independent fructose 1,6-bisphosphate aldolase fdaB, which functionally substitutes for the metal-dependent isoenzyme FbaA and enables S. aureus to survive host-imposed manganese starvation. Unexpectedly, and differing from most characterized metal-dependent aldolases, FbaA requires manganese for activity. Cumulatively, these findings reveal a new mechanism for overcoming nutritional immunity as well as the cofactor plasticity of even well-characterized metalloenzyme families.


Assuntos
Manganês , Infecções Estafilocócicas , Animais , Camundongos , Manganês/metabolismo , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Staphylococcus aureus/metabolismo , Isoenzimas/metabolismo , Metais/metabolismo , Bactérias/metabolismo , Aldeído Liases/metabolismo , Infecções Estafilocócicas/microbiologia
17.
Appl Biochem Biotechnol ; 195(2): 816-831, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36205844

RESUMO

The raw material cost of lactic acid fermentation accounts for the main part of the production cost, and this necessitates the exploration of the efficient use of cheap raw materials in lactic acid production. We compared the outcomes of the homologous expressions of xylose transporters (xylFGH, xylE, araE, and xylT), 6-phosphofructokinase (pfkA), fructose-bisphosphate aldolase (fbaA), and their co-expression in Lactococcus lactis IO-1 on lactic acid production using xylose as the raw material. We found that the production rate of lactic acid on xylose fermentation by L. lactis IO-1 overexpressing fbaA was the highest (14.42%). Among the xylose transporters investigated, XylT had the strongest xylose transport capacity in L. lactis IO-1, with an increase in the lactic acid production rate by 10.38%. The genes near the overexpression of fbaA or xylT in the metabolic pathway were more upregulated than the distant genes. The co-expression of fbaA and xylT increased the production rate of lactic acid by 27.84% on xylose fermentation by L. lactis IO-1. This work presents a novel strategy for the simultaneous enhancement of the expression of important genes at the beginning and midway of the xylose metabolic pathway of L. lactis IO-1, which could greatly improve the target production.


Assuntos
Frutose-Bifosfato Aldolase , Lactococcus lactis , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Xilose/metabolismo , Lactococcus lactis/genética , Fermentação , Ácido Láctico
18.
Clin Exp Med ; 23(6): 2443-2456, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36422738

RESUMO

The effect of ALDOA, an important regulator of tumor metabolism and immune cell function, on gastric cancer (GC) immune infiltration has not been elucidated. Hence, we explored the feasibility of using ALDOA combined with immune molecular markers as novel prognostic or therapeutic targets for GC patients. Bioinformatic analyses were initially performed in multiple databases to assess the prognostic prediction values of ALDOA expression in GC. Subsequently, both ALDOA expression and the clinicopathological characteristics of a total of 114 GC patients who underwent curative gastrectomy were collected to demonstrate the potential association between ALDOA expression and the biological behaviors of GC. Next, the expression of ALDOA and its effect on prognosis were determined at the mRNA and protein levels, respectively, using tissue microarrays and cellular experiments. Subsequently, several molecular mechanisms were revealed based on elaborate analyses, indicating that ALDOA expression was potentially involved in the progression of GC and could be considered a promising biomarker for evaluating the prognosis of GC. High ALDOA expression was frequently found in GC cells and GC tissues at the mRNA and protein levels. Based on survival analysis, the expression of ALDOA indicated comparatively poor overall survival (OS) in GC and was identified as an independent prognostic predictor of GC. Correlation analysis showed that ALDOA expression had a positive association with lymph node metastasis in GC patients. Additionally, microRNA-1179 was found to play a key role in inhibiting the expression of ALDOA in the metabolic pathways of GC cells, which might disrupt the expression of various immune molecules and be detrimental to the prognosis of GC. ALDOA should be considered a promising molecular target for evaluating the prognosis of GC, owing to its potential role in immune regulation.


Assuntos
Neoplasias Gástricas , Humanos , Prognóstico , Neoplasias Gástricas/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Análise de Sobrevida , RNA Mensageiro/genética , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo
19.
Frontiers of Medicine ; (4): 503-517, 2023.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-982571

RESUMO

Aldolase B (ALDOB), a glycolytic enzyme, is uniformly depleted in clear cell renal cell carcinoma (ccRCC) tissues. We previously showed that ALDOB inhibited proliferation through a mechanism independent of its enzymatic activity in ccRCC, but the mechanism was not unequivocally identified. We showed that the corepressor C-terminal-binding protein 2 (CtBP2) is a novel ALDOB-interacting protein in ccRCC. The CtBP2-to-ALDOB expression ratio in clinical samples was correlated with the expression of CtBP2 target genes and was associated with shorter survival. ALDOB inhibited CtBP2-mediated repression of multiple cell cycle inhibitor, proapoptotic, and epithelial marker genes. Furthermore, ALDOB overexpression decreased the proliferation and migration of ccRCC cells in an ALDOB-CtBP2 interaction-dependent manner. Mechanistically, our findings showed that ALDOB recruited acireductone dioxygenase 1, which catalyzes the synthesis of an endogenous inhibitor of CtBP2, 4-methylthio 2-oxobutyric acid. ALDOB functions as a scaffold to bring acireductone dioxygenase and CtBP2 in close proximity to potentiate acireductone dioxygenase-mediated inhibition of CtBP2, and this scaffolding effect was independent of ALDOB enzymatic activity. Moreover, increased ALDOB expression inhibited tumor growth in a xenograft model and decreased lung metastasis in vivo. Our findings reveal that ALDOB is a negative regulator of CtBP2 and inhibits tumor growth and metastasis in ccRCC.


Assuntos
Humanos , Carcinoma de Células Renais/genética , Frutose-Bifosfato Aldolase/metabolismo , Proteínas Correpressoras/metabolismo , Fatores de Transcrição/genética , Neoplasias Renais/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
20.
Sci Rep ; 12(1): 21283, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494481

RESUMO

Aldolase A (ALDOA), an important metabolic enzyme in the glycolytic pathway, plays an important role in regulating tumour metabolism. In this study, we investigated the expression pattern of ALDOA in hepatocellular carcinoma (HCC) and its biological role in tumour progression. Bioinformatics analysis, western blot (WB) and RT-qPCR were performed to detect the relative expression of ALDOA in HCC tissues and cell lines. A loss-of-function approach was used to investigate the biological function of ALDOA. The role of ALDOA on glycolysis was assessed by WB, glucose and lactate assay kits and a nude mouse xenograft model. Luciferase reporter experiment, chromatin immunoprecipitation and WB were performed to elucidate the underlying molecular. The expression level of ALODA was up-regulated in HCC tissues and cell lines. High ALDOA levels were associated with poorer patient overall survival. Mechanistic studies suggest that ALDOA is a direct target of miR-34a-5p, which can inhibit glycolysis in hepatocellular carcinoma cells by targeting the 3'UTR of ALDOA. PINK1 antisense RNA (PINK1-AS) competitively sponged miR-34a-5p to increase ALDOA expression by antagonizing miR-34a-5p-mediated ALDOA inhibition. MKL-1 acted as a transcription factor to promote the expression of PINK1-AS and ALDOA, thus promoting the deterioration of HCC cells. This study shows that high expression of ALDOA contributes to the development and poor prognosis of hepatocellular carcinoma and will be a target and potential prognostic biomarker for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Camundongos , Animais , Humanos , Carcinoma Hepatocelular/patologia , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Neoplasias Hepáticas/patologia , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Glicólise/genética , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...